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Abstract: In this paper, a very simple method is used to derive the weakly

singular traction boundary integral equation based on the integral relationships for

displacement gradients [Okada, Rajiyah and Atluri, 1989]. The concept of the MLPG

method is employed to solve the integral equations, especially those arising in solid

mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the

trial functions in this paper. Five boundary integral solution methods are introduced:

direct solution method; displacement boundary-value problem; traction boundary-value

problem; mixed boundary-value problem; and boundary variational principle. Based on

the local weak form of the BIE, four different nodal-based local test functions are

selected, leading to four different MLPG methods for each BIE solution method. These

methods combine the advantages of the MLPG method and the boundary element

method.



1. Introduction

Numerical methods based on integral equation formuhitions of continuum mechanics,

have become increasingly popular, for the solution of practical engineering problems.

The integral equation methods can be considered to be derivable fiom the global

unsymmetrical weak forms and Petrov-Galerkin approximation schemes (Zhang and

Atluri, 1986, 1988). In these methods, the trial and test function-spaces are quite different

from each other. Tile test functions correspond to fundamental solutions, in infinite space,

of the differential operator of the problem, and hence are usually infinitely differentiable,

except possibly at the singular points. If the fundamental solution can be derived for the

entire differential operator of lhe problem, the integral representations involve only

boundary-integrals, whose descretizations lead to the "boundary element method".

In practice, information about tile tractions on an oriented surface in the

continuum is often required, so it is necessary to introduce an integral relation for the

tractions. Such a traction integral equation is most often derived directly from the

displacement integral equation, by a direct differentiation of the displacement integral

equation. The resulting relation, however, contains a hyt)ersilzgular kerlzel. The numerical

solution of the hypersingular traction integral equation is challenging; and various

strategies have been developed to cope with these difficulties. Oil the other hand, a

distinctly different approach was presented by Okada, Rajiyah and Ailuri (1989),

[wherein they use the gradients of the fundamental solution as the test functions, instead

of tile fundamental solution itself], in order to obtain a ,vingularity-redttced traction

#ttegral equatiolz. Li and Mear (1998), Li, Mear and Xiao (1998) also developed a

weakly singular global weak-form traction integral equation. They follow a systematic

approach of regularization, in which stress functions associated with certain fundamental

solutions are utilized to affect a global "integration-by-parts". Based on the weakly



singularglobalweak-formintegralequations,the symmetricGalerkinboundaryelement

method(SGBEM) [Bonnet,Maier andPolizzotto(1998)]canbedeveloped.However,in

this paper,basedon the silzgularity-reduced tractio, i, tegral formuIatio, of Okada,

Rajiyah and Atluri (1989), we will develop a weakly singular local weak-form tractio,

integral equation, without the introduction of stress functions. Our derivation is much

simpler and direct than that of Li and Mear (1998).

Meshless methods, as alternative numerical approaches to eliminate the well-

known drawbacks in the finite element and boundary element methods, have attracted

much attention in recent decades, due to their flexibility, and due to their potential in

negating the need for the human-labor intensive process of constructing geometric

meshes in a domain. Such meshless methods are especially useful in problems with

discontinuities or moving boundaries. The main objective of the meshless methods is to

get rid of, or at least alleviate the difficulty of, meshing and remeshing the entire

structure; by only adding or deleting nodes in the entire structure, instead. Meshless

methods may also alleviate some other problems associated with the finite element

method, such as locldng, element distortion, and others.

Recently, the meshless local Petrov-Galerkin (MLPG) method, has been

developed, in two of its alternate forms, in Zhu, Zhang and Atluri (1998a, by, Atluri &

Zhu (1998a, b) and Atluri, Kim and Cho (1999), for solving linear and non-linear

boundary problems. This method is truly meshless, as no finite element/or boundary

element meshes are required, either for the purposes of interpolation of the trial and test

functions for the solution variables, or for the purpose of integration of the 'energy'. All

pertinent integrals can be easily, evaluated over over-lapping, regularly shaped, domains

(in general, spheres in thl-ee-dinmnsional problems) and their boundaries. Remarkable

successes of the MLPG method have been reported in solving the convection-diffusion

problems [Lin & Atluri (2000)1; fracture mechanics problems [Kim & Atluri (2000),

Ching & Batra (2001)]; Wavier-Stokes flows [Lin & Atluri (2001)]; and plate bending
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problems [Gu & Liu (2001); Long & Atluri (2002)]. A comparison study of the

efficiency and accuracy of a variety of meshless trial and test functions is presented in

Atluri and Shen (2002a, b), based on tile general concept of the meshless local Petrov-

Galerkin (MLPG) method.

In summary, the MLPG method is a truly meshless method, which involves not

only a meshless interpolation for the trial functions (such as MLS, PU, Shepard function

or RBF), but also a meshless integration of the weak-form (i.e. all integrations are always

performed over regularly shaped sub-domains such as spheres, parallelopipeds, and

ellipsoids in 3-D). In the conventional Galerkin method, the trial and test functions are

chosen from the same function-space. In MLPG, the nodal trial and lest functions can be

different: the nodal trial function may conespond to any one of MLS, PU, Shepard

function, or RBF types of interpolations; and the test function may be totally different,

and may correspond to any one of MLS, PU, Shepard function, RBF, a tteaviside step

function, a Dirac delta function, the Gaussian weight function of MLS, or any other

convenient function. Furthermore, the physical sizes of the supports of the nodal trial and

test functions may be different. These features make the MLPG method very flexible.

The MLPG method, based on a locol JbrnHUation, can include all the other meshless

methods based on global formulation, as special cases.

In this paper, we use the concept of the MLPG method to formulate

computational approaches to solve the integral equations, especially those arising in solid

mechanics. A Moving Least Squares (MLS) interpolation is used to approximat the trial

functions in this paper, although this is arbitrary. Four different nodal-based local test

functions are also selected, leading to four different MLPG methods for BIE. Based on

the MLPG concept [Atluri and Shen (2002a)], we label these variants of the MLPG

method for solving the boundary integral equations as MLPG/BIEI, MLPG/BIE 2,

MLPG/BIE 5, and MLPG/BIE 6, respectively [in conformity with the labeling introduced

in Atluri & Shen (2002a, b)].



The paper is organized as Iollows. In Section 2, we introduce the MLS

approximationoverthesurfaceof a 3-Dsolid,usingarbitrarycurvilinear co-ordinates.In

Section3 arederivedtheweaklysingularboundaryintegralequations,basedon theresult

from Okada,RajiyahandAtluri (1989),andtheresultsareshownto be identicalto those

in Li and Mear (1998). In Section 4, five boundary integral solution methods are

introduced: the direct solution method; displacement boundary-value problem; traction

boundary-value problem; mixed boundary-wdue problem; and the boundary variational

principle. Local weak forms for the boundary integral equations are introduced in each

of these boundary integral equation (BIE) solution methods; four di[lOrent nodal-based

local test functions are selected; and thus./bur di(ferent MLPG methods are developed in

each of those B1E solution methods. The paper concludes in Section 5.

2. Moving least-squares method (MLS) in Curvilinear Coordinates, Oil

the Boundary of a 3-D Body

Since the nodes lie only on the boundary O_ (a curved surface in 3-D space) of a 3-D

body g2, curvilinear co-ordinates are necessary to define the MLS interpolates on the

surface. The moving least-square method is generally considered to be one of the best

schemes to interpolate data with a reasonable accuracy. The MLS interpolation does not

pass through the nodal data. Here we give a brief summary of the MLS approximation for

curvilinear co-ordinates. For details of the MLS approximation, see Belytschko et al.

(1996), Atluri, Cho and Kim (I 999), and Atluri and Shen (2002a).

Consider a surface Fx, which is defined as the neighborhood of a point s and

denoted as the domain of definition of lhe MI.S approximation for the trial function at s,

and which is located in the problem surface 0._2. To approximate the distribution of the

function u in F,,, over a number of randomly located nodes {sz }, I=1, 2 .... , N, the moving

least squares approximant uh(s) Of u, Vs_ Fx, can be defined by
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r, (1)

where pT(s)=[pl(S), pa(S) ..... p,,,(S)] is a complete monomial basis, and a(s) is a vector

containing coefficients aj(s), j=l, 2 ..... m which are functions of the spatial curvilinear

coordinates s=[s I, s2] T. The commonly used bases in 2-D are the linear basis, due to their

simplicity. The linear basis assures that the MLS approximation has the linear

completeness. Thus, it can reproduce any smooth function and its ,[bst derivative with

arbitrary accuracy, as the approximation is refined. It is also possible to use other

functions in a basis. For example, in problems with singular solutions, singular functions

can be included in the basis.

The coefficient vector a(s) is determined by minimizing a weighted discrete L2

norm, which can be defined as

/=1

where wl(s) is a weight function associated with thc node I, with wl(s)>0 for all s in the

support of w1(s), s_ denotes the value of s at node l, N is the number of nodes in Vx for

which the weight functions wt(s)>0.

Here it should be noted that _}_, /=1, 2 ..... N, in equation (2), are the fictitious

nodal values, and not the actual nodal wtlues of the unknown trial function J'(s).

Substituting a(s), which is solved by minimizing J in equation (2), into equation

(1), give a relation which may be written in the form of an interpolation function similar

to that used in the FEM, as

N

h . uh(sl)=ltl,, ,,:', (3)
1=1



where

j=l

where

N

A(S)= E w, (s)p(s,)pT (s,) (5)

I=1

.(_)--[w,(q,(._,)..,_(q,(_),...,wN(40(_N)l (6)

The partial derivatives of 01(s) are obtained as

nl

! _ - -I Bo, 2 [r,_(_'").+,,,(_'B_+A_).]
j=l

(7)

-_ (A-') denotes the derivative of the inverse of A with respect to x k, which iswhere A,k = ,_

given by

A-I _A-IA A I
,k _ ,k

(8)

The MLS approximation is well defined, only when the matrix in eqn (5) is non-

singular, el(s) is usually called the shape function of the MLS approximation,

conesponding to the nodal point xl. From eqns (4) and (6), it may be seen that d(s)=0

when wl(s)=0, that preserves the local character of the moving least squares

approximation. The nodal shape function is complete up to the order of the basis. The



smoothnessof the nodal shapefunction is determinedby that of the basis,and of the

weight function.

Thechoiceof theweight functionis moreo1lessarbitrary,as long astheweight

function is positive and continuous.Both Gaussianand spline weight functions with

compactsupportscanbe consideredin the presentwork. The Gaussianweight function

correspondingto nodeI may be written as

w_(s)=

exp[-(dl/rl)2kl-exp[-(r,/c,) 2l_]

l-exp[-("l/Cl) 2k]tt J ' O<-dl <-rl

O, d l >- _;,

(9)

where dr =]s-s_[ is the distance from node st to point x, q is a constant controlling the

shape of the weight function uq (and lherefore the relative weights), and r/is the size of

tim support for the weight function _,,'_(and thus determines the support of node sl).

A spline weight function is defined as

d I >r_

(lo)

The size of support, rl of the weight function vvl associated with node I should be

chosen such that rt should be large enough to have a sufficient number of nodes covered

in the domain of definition of every sample point (n>m), in order to ensure the regularity

of A. It can be easily seen that the spline weight function (10) possesses C _ continuity.

So, the MLS shape functions, and the corresponding trial functions are C I continuous

over the entire domain.



3. Boundary Integral Equations in Linear Solid Mechanics

Let crij be the Cartesian components of thc Cauchy stress tensor, and let fi be the body

force per unit volume. The equations of linear and angular momentum balance are:

c_ji,i + .f i = 0; or�i = cri/ (11)

where ( ),i denotes differentiation with respect to material coordinates xi. For a lineal

elastic isotropic solid, the stress-strain relalions are:

crii = Eij_:kl (12)

EU,,,,,= ;te;0a,,,,, +,,(a,,,,a:,,+¢si,,a/,,,) (13)

where, ,,!. and ,u are Lame constants and _$,:/is the Kronecker's delta. The strain-

displacement relations are

The boundary tractions are given by:

t j = Crq,1 i
(15)

where ni are components of a unit outward normal to the closed boundary o)g2---F.

Let ui be the trial functions for displacement, and let ff_ be the corresponding test

functions. The global weak-form of the equilibrium equation (11), can be written as:
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0,,. + 0 (16)

where o"0 are assumed to be written as functions of ui through eqns (12) and (13).

We assume that the test functions /7, are the fundamental solutions, in infinite

space, to the Navier equations of elasticity, i.e.

where e r denotes the direction of the unit load at x,,,=_,,,. We assume that the solid is

isotropic, in which case the solution ui for(17) is readily available. Thus,

7 ' (11o stun 1o_ V) (18)it� = ll lp f I'

and

" t,')= tj.e. - niEil_l tk.,i (19)

Here, uj. is thejth component of displacement at location x,,, due to a unit load along the

pth direction at location _,,,. Likewise, t/. is the jth component of traction on an oriented

surface at x,,, due to a unit load along the pth direction at _,.. By using the divergence

theorem twice on eqn (16), and substituting eqn (17) in the resulting equation, one

obtains the integral equation:

(20)

where I" is the global boundary; and ,.Qis the global domain, enclosed by F. By taking the

point _, in the limit, to the boundary, one lnay obtain the well-known boundary integral
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equation for ul,. The kernel t* is singular at tile source point _, with the order ofIP

singularity being O(l/r 2) ill 3D or O(l/r) in 2D; while tile kernel ui_, is weakly singular,

with the order O(l/r) in 3D or O(ln(l/r)) ill 2D. Hence, the order of the singularity of eqn

(20) is O(1/r 2) in 3D or O(l/r) in 2D.

It is also well known that tile singular kernels u jr and tit, remain integrable in tile

limit when _,,, tends to the boundary. By a direct differentiation of eqn (20) with respect

to 9,, one may obtain:

Ottp I On_/,(x, d ) /)t_v(x,_)}
(21)

In the limit as _ --+F, the kernel 3,,}_,/0{ k is singular with tile order of singularity being

O(1/r 2) in 3D; the kernel Oti,,/O{_ becomes hyper-smgular, with the order of singularity

being O(llr 3) in 3D, and thus becomes numerically intractable. Hence, eqn (21) becomes

hyper-singular with the order of singularity being O(l/f) in 3D.

To circumvent these difficulties, Okada, Rajiyah and Atluri (1989, 1994)

developed alternate types of integral representation for displacement gradients, which

will be introduced in the following, while they originally presented the non-hypersingular

integral equations for the Field-Boundary Element Method in nonlinear solid mechanics.

Instead of writing tile global weak-form of the linear momentum balance relations

in a scalar-form as in eqn (16), Okada and Atluri (1989, 1994) wrote tile global weak-

forms of the linear momentum balance relation in a three component vector form, as:

f_ (o-0,' + .f/)i'i,,kdg2 =0 (22)

Assuming that the linear elastic solid is homogeneous, (22) can be rewritten as:
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F u ,/)]ffj.kdg2 0 (23)

Integrating eqn (23) by parts, applying the divcrgence theorem, and making use of eqn

(15), one obtains:

£_(tjh'j._ + t_,u,..k -,,kEij,,,,,t, ......ff/,,)dV + :_.7.,u,,,,kd£2 + In./'j/7j.kd_ = 0 (24)

where

-I _" i7L--(-,. (25 

and

T,,,= E /7 .n (26)
IjtIIII j ,l m

Upon taking /Tiand _ to be tile fundamental solutions as in eqns (18) and (19), one

obtains the global integral relation:

(27)

In eqn (27), C=I when _,,,6 g2, and C=1/2 at a smooth part of the boundary. As compared

to eqn (21) wherein the kernel Otj],/O_ k is involved in the boundary integral, in the

presently derived eqn (27), only the kernels ui.,i and t,_,:, are involved at F. Note that the

orders of singularity in uj:,,i and t,,,., which are equal, are nevertheless smaller than that

in at j,,/O{_. The singularities in the integrals in eqn (27) are in general tractable, and the

integrals in eqn (27) can be evaluated by the method suggested by Guiggiani and Casalini
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(1987)for two-dimensionalcase,by GuiggianiandGigante(1990) for three-dimensional

case,or by an alternatemethod(Okadaand Atluri, 1994).Once the tractionstj at the

boundary are completely known the displacement gradients ui.j can be determined from

eqn (27) in the interior f2 as well as at I7.

Now, we will further regularize eqn (27), in order to reduce its singularity to be

same as the orders of singularity in u/,. The stuface curl operator can be defined as

0 (28)
D m : nieik m O.rk

where elk,,, is the usual pern-lutalion symbol. The surface curl, eqn (28) is associated with

the following form of the Stokes' formula:

I,,D,,,.f(x)lr(,d= _,,.S(x),L_:,,, (29)

where F is any regular surface with the edge contour 01L

The first two terms in the extreme right side of eqn (27) can hence be written as

nku .... °',,,,,v - n,,u,,,.t°',,,,,/ ...... t, (nku, ..... - #L,u,,,._ ) = -rx'_"; e''ktDtu''' (30)

Thus, eqn (27) can be rewritten as

c..,...¢)--f.<-<...,.<....,...,...-
( o-+ _/Dll= -- e l -

. Ilt#l[_ 11 t#l

,,,,;,,,),w-[<" " a,[ j [I jl,, k d

,,,,;,,,_><_-q,.r,,,;,,,,<w- jos°,,,,,;,da(x)l
(31)

The orders of singularity in uw. _ and cr,,,,,s,, which are equal, are O(l/r 2) in 3D. So, eqn

(31) is singular with the order of singular O(]lr 2) in 3D. This equation (31) is exactly the
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same as that in Li, Mear and Xiao (1998). IIowever, here we used a totally different and

simple method to derive it, based on the traction integral equation developed by Okada,

Rajiyah and Atluri (1989). In Li, Meal and Xiao (1998), a rnulti-valued stress function is

introduced, and the derivation is based on the gradient of the displacement integral

equations.

An integral relation for the traction vector then follows immediately fiom eqn

(31) by an application of Hook's law, with the result:

* • " " * * X

CcT,_({)=-£(I_,,,,,I),u,,+tjo',,,;)dl-k,,,,,_[_.Ji,,j,,I,,dF-£,fj.ku,,d_Z( )] (32)

where F, bt,,,(x-_ =Ea,vke,,_tcr,_,,,p. It is noted that the symmetry condition

ujp(x-{)=u,,j(x-_) has been used. Eqn (32)is singular with the order of singular

O( l/r 2) in 3D.

3.1 Weakly singular integral equations

Using Somigliana's identity, a weakly singular displacement integral equation can

be readily obtained. This can bc achieved by a subtraction technique often motivated by

consideration of a rigid body motion (Brebbia and Dominguez, 1992). Li, Mear and Xiao

(1998) exploited the decomposition of the stress fundamental solution, in order to obtain

a weakly singular displacement integral equation. Here, we will also use this method. The

stress fundamental solution can be decomposed as

.;, (x-¢)- H,;(x-¢) (33)

where
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87z(1- v)G,t,; (z)= (1 - 2v)e""/1-r + e_/ z,Zpr3 (34)

and

Z__.L
0(1) =aj r' (35)

where v is the Poisson's ratio and r(z) = z .

Similar to Li, Mear and Xiao (1998), the following results will be used:

(36)
f k_mj(x - _ ) = % Ox, + Ox°,

where

8_(l-v)C'k'"J(z)=@f-2_(5'"'r + 2(I-v)6k'c_/"' +4vSk"'SJ'-26k/6'' (37)

and

8rc(l-v)l'ku(z)= (1- 2v)%, +e,,, rZ j
(38)

where ,u is the shear modulus. Thus, the traction global integral equation can be obtained

from eqa. (35-38) as [same as in Li, Meat and Xiao (1998)1'

16



c,,¢)=,,_¢k,,....o_.w.r,.c,,o,- o_-7L, ,,o,,-
(39)

+,,_(_).-5-,,,_.[,. ,___,,(x),,,_-,,,,(_>,,,,,_.r,..,,,,,;,,,,,<,,_- .[,,.r,.,,,;,d_(x )1

Incorporating the decomposition (21) into (20), and utilizing Stokes's theorem to

integrate by parts, a weakly singular integral equation is then obtained as

. (¢ - x,) (x)wc,,,,(_)--J,.,,(x),,,,(x._)_'_+'.1,,,,, ,., ,,_

+.[,_,,,,,(x)<;,(x,__w+f,f, (x),;,,(x.__a
(4O)

Note that the kernel ,,i(x)(gi-xi)/, '_

singular since ,,, (x)(¢/ - x, )/r _ O(,)

singular kernel.

On the other hand, we can find that

appearing in the

as ,---+0, hence,

second integral is only weakly

eqn (40) involves only O(1/r)

* i * *
l.lk Eiymnlg ,nl2jp,i _ [ jH_l., k = ilk l_Y it i jp, i I lliO'ijld jp,k

= crq (nkuw. i - ny.#,.t ) = tTve,,,,k D,,u p

(41)

Thus, using eqn (41), the traction integral equation (39) can also be rewritten as

,

- ,,oE,,,,,,,I[,..r,,,,',,,,,.(_r- [.,,.f,.,,,,,da(x)l
(42)

The corresponding weaMy singular integral equation can then be obtained as
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E

l f, -x,)+--,, ,,, _,
4To " r

+,,o(¢ f, . )<,;(x.¢
(43)

Note that the singular kernel appearing in the integral equation (43) is only weakly

singular (Cauchy singular kernel), with lhc order of singular O(1/r), similar to the

displacement integral equation (40) and weaker than that in equation (39). In this

equation, second derivatives of the shape functions are needed in constructing the global

stiffiness matrix. It is important to note that even though the singularity of the integral

kernels has been reduced to Cauchy type, it still requires that the derivatives of the

displacements are continuous. However, the calculation of the derivatives of shape

functions from the MLS approximation is quite costly. Hence, we choose to use equation

(39) to develop the MLPG approach in this paper.

4. Solution Methods for BIE: the Meshless Local Petrov-Galerkin

(MLPG) Approach

To solve the boundary integral equations, different methods are proposed in this section,

similar to those in traditional boundary element methods (Atluri and Grannell, 1978).

To start with, we note that in a wcll-posed boundary-value problem in 3-D solid

mechanics, at any point on the boundary, any 3 quantities out of the 6, viz, ui (throe) and

ta (3) can be prescribed and the other 3 components are the unknowns to be solved for. In

a pure displacement boundary-wflue problem, all the 3-components of ui are prescribed at

every point on the surface of the 3-D solid; and correspondingly, all the three components

of tj at every point on 0_ are the unknowns. Conversely, in a pure traction boundary-
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value problem, all the threc tj are prescribed at every point on 092, while all the 3

components of ui at 092 are unknown.

4.1 Direct solution method

This method attempts to obtain a dircct numerical solution to equation (40). Upon

multiplying (40) by a continuous test fimction qv(_) over a local sub-domain Fs (a part of

F) and applying the divergence theorem, a local "weakly singular" weak-[brm of the

global displacement integral equation for a system, without body force, is obtained as

_,c.. (_)q.(_)Jr : .1,:,q,,(_)J,, (x),;,(x,_)_rdr

41r , r a "

+_.q,,(_)_1_,,,,(xX;,',;(x,_}lr_r,

(44)

To obtain the discrete equations based on MLS interpolation, the following

interpolations are used

N

u,(s) : ____0'(s}_/ (45a)
/=I

N

t,(s)= Z O' (s)l_' (45b)
I=1

N

q, (s) = Z _/t' (s)c)[ (45c)
/-1
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wheres is a point with curvilinear co-ordinates (S1,S2) , O' (IS) and 1F' (s) are the nodal

shape functions for trial and test functions centered at node, sl and s2 are functions of xi.

In general, in meshless interpolations, {iJ are fictitious nodal values. Substitution of eqns

(45) into formulations (44) leads to tile following discretized system of linear equations

for each node I

rV'" i: ....... I, = W._,1 (46)Z t ll, q i --uO,,quJ ) p

III

where

v,;:,=I,::v,'(¢)I,,,,o"(+;,,(x, (47)

" : f It f {It " (x-_)b,o'ldFdF, +GP(x-{)D,,O / }dFdr_u
at; " '

(48)

w, : ],:! C¢',l//dl'.,. (49)

m is the number of the background nlesh, and I is the nodal number. Due to the fact that

the first step of the dual integration is performed on the global boundary surface I', a

background mesh will have to be used on F. It is noted that the repeated indices imply

summation here. The trial functions appcar only in the global integration over F, which

means that the integrand for the local integration over Fs will be simple. It can be found

that the assembly process is not required to form a global 'stiffness' matrix.

The equations can be solved in the same way as in the conventional BEM. except

that the transformations between i},_ and _7/, i}_ and 7/ must be perfommd, due to the
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fact that the MLS interpolateslack tile deltafunction propertyof the usualBEM shape

functions[Atluri, Kim andCho(1999),Athni andShen(2002a)].

On the boundarysurfaceon which rigareprescribed,l.)[ canbe obtainedby the

following transformation:

N

-i (50)
t_ = £ RIj_ J

J=l

On the boundary surface oll which ti are prescribed, fiI can be obtained by tile same

transformation as the above

where R u = [_a(s t)]-'. The details of the lransformation method for the imposition of

boundary conditions can be found in [Atluri, Kim and Cho (1999), Atluri and Shen

(2002a)].

Based on the local weak form, the lneshless local Petrov-Galerkin (MLPG)

method is used to treat the global boundary integral equations. However, due to the fact

that a global weak form is used to derive the boundary integral equations, we need a

background mesh to perform the global integration first. For the second step, to perform

the local integration, no mesh is used.

In general, in MLPG, the nodal trial and test functions can be different, the nodal

trial function may correspond to any one of: I. MLS; 2. Partition of unity; 3. Shepard

function; or 4. Radial basis function interpolations (Atluri and Shen, 2002a); and the test

function may be totally different. Furthermore, the size of the sub-domains over which

the nodal trial and test functions are, respectively, non-zero, may be different. Different

choices for the basis functions for the trial function, and the test functions, will lead to
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different approximationmethods.Wc will use the MLS interpolationsintroducedin

Section2, to generatethe trial functions.Basedon the conceptof the MLPG, the test

functionsovereachlocalboundaryF_canbechosenthrougha varietyof ways.

As a known test function is usedill the local weak form (LWF), the useof the

LWF for one point (and here for one sub-surfaceF_) will yield only one algebraic

equation.It is noted that the trial functions u or t within the sub-surface F,, in the

interpolations without Kronecker's Della properties, is determined by the fictitious nodal

values kit or i I, respectively, within the domain of definition for all points x falling

within F_. One can obtain as many equations as the nurnber of nodes. Hence, we need as

many local boundary surfaces F, as the number of nodes in the global boundary surface,

in order to obtain as many equations as the number of unknowns. In the present paper,

dealing with 3D problems, the local boundary surface is chosen as a circle, centered at a

node Xz. Four test functions are chosen to [ormulate four different MLPG methods for

BIE:

(1) the test function over F, is the same as the weight function in the MLS

approximation: The resultant Meshless l.ocal Petrov-Galerkin Method for directly

solving the BIE is denoted as MLPG/BIEI. In this case, just let t/r'=w I in eqns

(47), (48) and (49).

(2) the test function over F.,. is the collocation Dirac's Delta function (collocation

method): The resultant Meshlcss Local Petrov-Galerkin Method for directly

solving the BIE is denoted as MLPG/BIE2. In this case, let _=,5(_ t) in eqns (47),

(48) and (49), then it can be found that we get the collocation BEM. The

collocation BEM can be treated simply as a special case of the MLPG approach.

Chati, Mukhm_jee and Mukheljee (1999) developed a boundary node method by a

coupling between boundary integrals equations (BIE) and Moving Least-Squares

(MLS) interpolants. In fact, their method can be treated simply as a special case of

the present MLPG method app,oach for B1E, if we let _J=6(_ t) in the local weak-
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form. However, here we use an entirely d_fferent regularization approach, to

avoid the strong singularity.

(3) the test function over F, is the Hcaviside step function (constant over each local

sub-domain F_): The resultant Meshless Local Petrov-Galerkin Method for

solving the BIE is denoted as MLPG/BIE5. In this case, let q/=l in eqns (47),

(48) and (49).

(4) the test function over [', is identical to the trial function (Galerkin method): The

resultant Meshless Local Petrov-Galerkin Method for solving the BIE is denoted

as MLPG/BIE6. In the Galcrkin method, the trial and test functions come fiom

the same space. In this case, let qi =u,(x), i.e. let _t=¢1 in eqns (47), (48) and (49).

The interrelationships of these developments can be illustrated as in Fig. 1.

Underlying all these mcshless methods for BIE is the general concept of the meshless

local Petrov-Galerkin method; thus, MLPG provides a rational basis fox constructing

meshless methods with a greater degree of flexibility. Theoretically, as long as the union

of all local domains covers the global boundary surface, the boundary integral equation

will be satisfied.

In the collocation BEM, the location of collocation nodes is an important

ingredient for the success of the method, ttowever, if we employ MLPG method, this

issue can be avoided.

4.2 Displacement Boundary-Value Problems in Solid Mechanics

In this case, displacements are prescribed on all the boundaries. Then, the local weakly

singular weak-form displacement integral equation (44) for a system without body force

can be rewritten as
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I,:,q,,(¢)f,-'J(_)';,(x.¢)ll",it,=fc_,(_}i,,(_}it,
al_, J

1 fl, qv(_)flnl (_i-xi)4_z , r_ fi''' (x)tFdF s

-/,:,%(¢)f,,,,,,_,(x_,_j(_,¢)trdr,.

(52)

To obtain the discrete equations based on MLS interpolation, using interpolations (45b,c),

we can obtain

.... "g (53)AII,,ut i = trip
tit

where all fj are unknowns, and

'" ' _ " (x,_)trdr, (54)

- f,.:_"f,.",',:,(x,_),,,,(¢)v,(x)_r,_r_ (55)

Similar to Subsection 4.1, four test functions are chosen to formulate four different

MLPG methods for the displacement BIE:

(1) MLPG/DBIEI: the test function over ['_ is the same as the weight function in the

MLS approximation. In this case, just let _=w t in eqns (53)-(55).

(2) MLPG/DBIE2: the test function over [', is the collocation Dirac's Delta function

(collocation method). In this case, let q/=_(_/) in eqns (53-55), then it can be

found that we get the collocation displacemcnt BEM.
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(3) MLPG/DBIE5: the test function over I_ is the Heaviside step function (constant

over each local sub-domain F,). In this case, let I//=1 in eqns (53)-(55).

(4) MLPG/DBIE6: the test function over ['s is identical to the trial function (Galerkm

method). In this case, let qi =ti(x), i.e. let q/=O I in eqns (53)-(55).

The inteiTelationships of these developments can also be illustrated as in Fig. 1.

4.3 Traction Boundary-Value Problem in Solid Mechanics

In this case, tractions are prescribed o11 all the boundaries. Upon multiplying (39) by a

continuous test function vl,(_) and applying the divergence theorem, a local weakly

singular weak-form traction integral equation is obtained as

(56)

where 0Fs is the edge of the local bourldaly surface F_. It is noted that only the weakly

singular kernel u;v is involved in these equations. In the present formulations, the

boundary integral equations are satisfied in all the local boundary surfaces Fs.

Theoretically, as long as the union of all local boundary surface covers the global

boundary surface, i.e., uF_DF, the boundary integral equations will be satisfied in the

global boundary surface.

To obtain the discrete equations based on

interpolations are used
N

t,, (s) = Z ¢' (s),},' (57a)
I=1

MLS interpolation, the following
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N

v,(s)--E_" (s)_,! (57b)
/=1

Substitution of eqns (57) into formulations (56) leads to following discretized system of

linear equations for each node I

_ m ^ Jl//p.,_]ll I' = Q/p

Ill

(58)

with all t_j are unknowns, and

,;.,j : f,.:_,_,'f, %,(x _J,,0'_vdv,

-_,,_:_.'f,.,,,c,,,,,j(x-_)v,,0.'(x)._'.t_,
(59)

Q lp

+:f_F,_.'f %(x-_)-_(x).i-._.,
i dl_

(60)

Similar to Subsection 4.1, four test functions are chosen to formulate four different

MLPG methods for the traction BIE:

(1) MLPG/TBIEI: the test function over I', is the same as the weight function in the

MLS approximation. In this case, just let t//'=w ¢ in eqns (59) and (60).

(2) MLPG/TBIE2: the test function over F, is the collocation Dirac's Delta function

(collocation method), in this case, let 1//=5(_ I) in eqns (59), and (60), then it can

be found that we get the collocation displacement BEM.

(3) MLPG/TBIE5: the test function over I', is the tteaviside step function (constant

over each local sub-domain F,). In this case, let q/=l in eqns (59), and (60).
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(4) MLPG/TBIE6: thetestfunctionovcr F, is identical to the trial function (Galerkin

method). In this case, let vi =ui(x), i.e. let 1//=4] in eqns (59), and (60).

The interrelationships of these developments can also be illustrated as in Fig. 1.

4.4 Mixed Boundary-Value l'roblenl in Solid Mechanics

This method is developed for the special problems of fracture mechanics of linearly

elastic three-dimensional solids, containing cracks. The formulation is based both on the

displacement integral equation (40) and traclion integral equation (39). When applied to

fracture problems, the traditional boundary element methods (or the direct methods in

section 4.1) become mathematically degenerate in that when the displacement integral

equation is applied to points on the crack surface, information about the traction on the

crack is lost (Cruse, 1988). To circumvent tiffs difficulty an integral equation for the

traction on the crack surface may be employed. Moreover, in practice, information about

the tractions on an oriented surface in the continuum is often required, so it is necessary

to use both the traction and displacement integral equations.

Upon multiplying (40) by a continuous test function qt,(_) and applying the

divergence theorem, a local weakly singular weak-form of the displacement integral

equation for a system without body force is obtained [as in (44)] as

: f,

4_ , r 3 p ,
(61)
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Upon multiplying (39) by a continuous test function vb(_) and applying the

divergence theorem, a local weakly singular weak-form of the traction integral equation

is obtained as

(62)

where 0Fs is the edge of the local boundary surface Fs. It is noted that only the weakly

singular kernel uj_, is inwAved in these equations.

In tim absence of body forces, let the regular boundary be partitioned into a

portion F, on which tractions are prescribed and a portion F,, on displacements are

prescribed such that F=Ft +V,. Applying the local weak-form displacement integral

equation (61) on F,, with Ok----0on F',, and, similarly, applying the local weak-form traction

integral equation (62) on l't with vk=0 on F,, gives rise to the formulation

4q,,)+ B(q,.)=z;(,:) (for F,,) (63)

o(v,,)+.<,,,,,)--o(,,) (for F,) (64)

where

£:.../..(¢)£ (65)
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where _- and { are the prescribed displacement and tractions, respectively, on the

boundary F,, and on the boundary 1-',.

To obtain the discrete equations based on MLS interpolation, using the

interpolations (45) and (57), and subslituting them into formulations (63) and (64) leads

to the following discretizcd system of linear equations for each node I

E ttl ^ J m _ J(A#,jat j + B,,,.,juj ) = I_p (71)

E l'f* m ^ ,1 rv m ^ Jv.,o,j / + H::,.dt j ) = Q#, (72)
m

where

A;I:J' : £;'.. g'(+ )£7 q)' (x)u ;,, (x, { )./Fdl-'._
(73)

" I, £ ,'(x-e),,,,0'_w,_t,+c,,_(-_>o0'= x }dl'dF,B o,4 ,, 11! i {I I ,,_ . .
.... I,"'

(74)

(75)

tt,7,jj: £,:,1),lilt£7C,,,,,j(x- _}),,O'dFdI_,

- _,:'1"£;,,,C,,,,,,(_-¢>,,_'(x)_r_<
(76)
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(77)

+£:_,v.',,,,/_./£:.,,;(x-¢_,(_w,a:.
- £:_,_,_.'f,.,c,,,,,,Ix-_>,,_,.(x>_v<

+j;<_'£_,c,,,,,,tx-_>,,</x_w.<

(78)

m is the number of the background mesh, and I is the nodal number. It is noted that the

repeated indices imply sunanmtion here. Note again that the trial functions appear only in

the global integration, which means that tlae integrand for the local integration will be

simple.

Similar to Subsection 4.1, four test functions are chosen to formulate four

different MLPG methods for the mixed BIE:

(1) MLPG/MBIEI: the test function over V, is tim same as the weight function in tile

MLS approximation. In this case, let _/=w t in eqns (73), (74) and (77), and

rewrite eqns (75), (76) and (78) as

(79)

,_,,:,,=£,,D,w,f,;,,,<,,_,/_-¢>,,_'_,_< (80)
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Q/p

(81)

Here that the test function (weight function) vanishes at o)F,, is considered.

(2) MLPG/MBIE2: the test function over f', is the collocation Dirac's Delta function

(collocation method). In this case, let I//=6(_ 1) in eqns (73), (74) and (77), then it

can be found that we get the collocation BEM.

(3) MLPG/MBIES: the test function over U, is the Heaviside step function (constant

over each local sub-domain F.0. In this case, let I//--1 in eqns (73), (74) and (77),

and eqns (75), (76) and (78) call be rewritten as

(82)

,,,,;;:.,=-_,,.:,£.:,,c,,,,,,(,,-_>,,_,'(.)dr,_¢, (83)

QIp =-£:__<,(_)<+{,_£<,,(,-_};(,,>,_<,
+.[,_:,,,,(_)£;.,,;(x-_>-,(,,;,r,<
+ _,,.:, £:, C,,,,i (x - _:)D, }7,(x)dFd¢,

(84)

It is well-known that the numerical integration plays an important role in the

convergence of numerical solutions of meshlcss methods. From equation (83), it can be

seen that some surface integrals over Fs replaced by the curve integrals over OFs, which

will improve effectiveness of Ibis method.
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(4) MLPG/MBIE6: tile testfunctionoverr,. is identicalto thetrial function(Galerkin

method).In the Galerkinmethod,the trial function and test function comefrom

thesamespace.In thiscase,letq,--ti(x) and Vi=lti(X), then we have

a,,,_j= .,0' ....O %,(x, FdF, (85)

B,;I,=J, 0'£ {H,:;(x-¢),,,,0'_r_,+c,,,P(x-_)Vn0'/jrJr,
,u I -m

(86)

" ' ,, _ !_ 0'¢,,,,=IF:,/_,,0£,,<,(x-C>£,,,- £,, ,,,,(¢)£:,_,,,,;(x-¢>'££, (87)

1t;;;_--_,:,D,o'_:,,c,,,,,,(_- ¢)o,,o_Jrar,, (88)

,_,,,: f,, c_,,(¢_,,,,:,- f,,0,_,-j(x),;,,(x,¢_,_<
.,. s,,

- j,::,,9'_:,-:;j(x,_),,,,,(¢)_,(,,_r,z_ (89)

.... E

+_:o',,,,(_)J],;H,'&- _))(,,)Jr_r,, n/_ .

- f,:,,_,o'f,:,c,,,,,,(x-_,,_j(x;_r,_r,

(9O)
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If we replace the local boundary by tile global boundary in the above equations, the

formulations are same as those in SGBEM [Li, Mear and Xiao (1998)].

The interrelationships of these developments can also be illustrated as in Fig. 1. It

is noted that in all the MLPG methods in this study, the usual "element assembly"

process is not required, unlike the SGBEM, to form the global stiffness matrix.

Due to their flexibility, and due to their potential in negating the need for the

human-labor process of constructing meshes along boundary surfaces, such MLPG

methods for B1E are especially useful in those problems with discontinuities or moving

boundaries. The main objective of the meshless methods is to get rid of, or at least

alleviate the difficulty of, mcshing and remcshing the entire boundary surface; by only

adding or deleting nodes in the entire boundary surface, instead.

The MLPG methods for 131I:, are characterized by weakly singular kernels and

meshless local weak form. SGBEM is also characterized by weakly singular kernels, but

it is based on the global weak form and meshes [i.e., in SGBEM, two global integrals are

involved].

In SGBEM, for a specific pair of elements, which have no common points, the

ordinary Gauss rule can provide sufficienl accuracy. It is not appropriate for other

elements, which are coincidcnt or have one edge or one vertex in common. To deal with

weakly singular integrals, there exist melhocts using transformation of variables in order

to weaken or cancel out the singularity by Jacobian of the transformation before applying

the ordinary Gauss rule. Thus, in SGBEM, there exist 9 'weakly singular element ',

which are coincident or have one edge or one vertex in common with the master element,

for every master element for quadrilateral boundary elements, and 13 'weakly singular

elements' for every mastcr element for triangular boundary elements, that need the

transformation of variable. This procedure will be costly. However, in the MLPG for

BIE, for every (master) local boundary surface F_, we can choose an appropriate
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backgroundmeshandadjusttile sizeof F_,to makeFsonly involved in onebackground

element,thatwill improvetheeffectivenessobviously.

In fact, this methodcan be deriveddirectly from the local weak-form of tile

boundaryconditions:

£,,,(", - _-,}li rig" : 0 (91)

£ (1. - 7, )JidF = 0 (92)

where, a priori, the equilibrium equations and constitutive relations are satisfied. Using

equations (40) and (39) to represents ui and fi respectively, we can obtain the method

developed in this subsection.

4.5 Boundary Variational Principle

This subsection deals with boundary solution rnethods, based on a boundary variational

principle [Atluri and Grannell (1978)1. The functions that are assumed to be independent

are: displacement u in the domain; boundary displacement _; and boundary traction

7 [which is a Lagrange rnultipler to enforce u= a at F].

The corresponding variational functional lip, for linear elasticity, is defined as

follows:

FIl =_ lcriia-Td£2-fl, Tiffidl'--Ii. _(ui-ffi)c/F (93)
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wheretheboundarydisplacementii satisfieslhe essentialboundarycondition, i.e., fi =_

on F,, i i is the prescribedtractionon the tractionboundaryG, and no body force is

considered.

By carryingout thevariationsit canbeshownthat

(94)

with thevanishingof _l_l,, Olle call also have the following equivalent integral equations:

Iv (t, - _)c_u,dV - £ oij,jau , cf_ = 0 (95)

ft. (u, - gi, )c_TdF = 0 (96)

Iv, (t, - _ )(Sh',dl" = 0 (97)

All 7- and fi" are unknown. The traction (natural) boundary condition 7"= t- on Ft and the

essential boundary condition _ = h- on I', are salisfied a priori, hence, it can be ignored

temporarily in the following development.

It can be seen that equations (95) and (96) hold in any sub-domain. According to

the concept of the MLPG (Atluri and Shen, 2002a), we use the following weak forms on

a sub-domain g2_ and the corresponding boundary Fs to replace equations (95) and (96)

£. (t, - _ )v, dF -I_2, °i"/v' dg2 = 0 (98)
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£. (u, -/7, )qidl" = 0 (99)

where v and q are test functions, and the choice of different test function leads to

different MLPG methods. If we take the test functions as the weight function in the MLS

approximation, we will obtain the method developed in Zhang and Yao (2001), however,

the local weak forms used here are a little different from those in Zhang and Yao (2001),

where the boundary of the subdomain D-s is involved, that actually should not appear. If

the subdomain f2s does not intersect with the boundary, equation (98) will not include the

boundary integral. In equations (98) and (99), ii and i on the boundary, and v and q are

interpolated according to equations (45) and (57b). The u and t inside g2 and on F are

defined as [Atluri and Grannell (1978), Zhang and Yao (2001)]

N

ltt _ 1 I: 1,1q) II F

I=1

N

y_.,''t i = lip(.I P

I-I

(100)

and _ *where ujp t jr are the fundamental solutions with the source point at a node I, % are

unknown parameters. We only consider the nodes on the boundary.

As u is expressed by equation (100), the last integral on the left-hand side of

equation (98) vanishes if one excludes node .I from the subdomain D., at which the

singularity occurs. This singularity will be considered when evaluating the boundary

integrals. Then by substituting equations (45), (57) and (100) into (98) and (99), and

omitting the vanished terms, we can obtain the final system of equations. The equations

can be solved in the same way as that in Subseclion 4.1.

Similar to Subsection 4.1, four test functions are chosen to formulate four

different MLPG methods [Ol-boundaly variational principle:
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(1) MLPGI: thetestfunctionsPi and qi, over F,. are the same as the weight function in

the MLS approximalion. Then it can be found that we obtian the method

developed in Zhang and Yao (2001 ).

(2) MLPG2: the test functions vi and qi, over Fs is the collocation Dirac's Delta

function (collocation method).

(3) MLPG5: the test functions vi and qi, over F, is the Heaviside step function

(constant over each local sub-domain F,)

(4) MLPG6: the test functions vi and qi, over F, is identical to the trial function

(Galerkin method). In this case, let vi = i7_ and qi = 7i.

5. Conclusion

The meshless local Peirov-Galerkin me/hod (MLPG) method is extended to treat

the boundary integral equations in this paper. Five boundary integral solution methods

are introduced: direct solution method; displacement boundary-value problem; traction

boundary-value problem; mixed boundary-value problem; and boundary variational

principle. Based on the local weak form of BIE, four different nodal-based local lest

functions are selected, leading to four diffcrenl MLPG methods for each BIE solution

method. These methods combine the advantage of the MLPG and the boundary element

method.

A very simple method is used to derive the weakly singular traction boundary

integral equation based on the integral relationships for displacement gradients [Okada

and Atluri, 1989].

Numerical implementation and demonstrations of the advantages of the presently

proposed MLPG method for BIE will be discussed by the authors in forthcoming papers.
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Fig. 1 Interrelationship of meshlcss methods for BIE.
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